

period: how long it takes to complete 1 full cycle /1 full wavelength amplitude: the difference between the highest and lowest points (average)

PERIOD FROM EQUATION

EQUATION FROM GRAPH

$$b = \frac{2\pi}{\text{period}}$$

TRANSFORMATIONS OF SINE AND COSINE CURVES

INVESTIGATION

- What effect does changing the value of a in $y = a \sin x$ have on the graph of the function? I.e. draw and compare $y = \sin x$, $y = 2 \sin x$, $y = 3 \sin x$, $y = -2 \sin x$ etc. and try to write a general statement regarding the effect altering a has on the graph of $y = a \sin x$.
- Similarly investigate changing the value of b in $y = a \sin(bx)$, for b > 0. I.e. for some fixed value of a, say 1, compare graphs of $y = 1 \sin x$, $y = 1 \sin 2x$, $y = 1 \sin 3x$, $y = 1 \sin 4x$ etc. and try to write a general statement regarding the effect altering b has on the graph of $y = a \sin bx$.
- Similarly investigate changing the value of c in $y = a \sin [b(x - c)]$ d in $y = a \sin [b(x-c)] + d$.
- Similarly investigate the cosine and tangent functions.

y = a sin (bx - c)+d

a = changes the amplitude

b = changes the period

= moves left and right (opposite sign)

d = moves up and down

AMPLITUDE

in y = 2 sin (x) amplitude = 2

in $y = -2 \sin(x)$ amplitude = (ignore the sign)

CHANGING A

(x) miz = N

y=2sin(x)

y=0:5sin(x)

PERIOD

is given by: period = $\frac{2\pi}{b}$ to find b: b= $\frac{2\pi}{period}$

CHANGING B

flipped over the x-axis

$$y = \sin(x)$$

 $y = \sin(2x)$

 $y = \sin(0.5x)$

